SL Paper 1

Let $f:\mathbb{R} imes\mathbb{R} o\mathbb{R} imes\mathbb{R}$ be defined by $f(x,y)=(x+3y,\,2x-y).$

a. Given that A is the interval $\{x: 0 \le x \le 3\}$ and B is the interval $\{y: 0 \le x \le 4\}$ then describe A × B in geometric form.	[3]
b.i. Show that the function f is a bijection.	[8]
b.iiHence find the inverse function f^{-1} .	[2]

The group $\{G, *\}$ is defined on the set $G = \{1, 2, 3, 4, 5, 6\}$ where * denotes multiplication modulo 7.

a. Draw the Cayley table for $\{G, *\}$.	[3]
b. (i) Determine the order of each element of $\{G, *\}$.	[6]
(ii) Find all the proper subgroups of $\{G, *\}$.	
c. Solve the equation $x * 6 * x = 3$ where $x \in G$.	[3]

Let G denote the set of 2×2 matrices whose elements belong to \mathbb{R} and whose determinant is equal to 1. Let * denote matrix multiplication which may be assumed to be associative.

Let H denote the set of 2 imes 2 matrices whose elements belong to $\mathbb Z$ and whose determinant is equal to 1.

a. Show that $\{G, *\}$ is a group.	[5]
b. Determine whether or not $\{H, *\}$ is a subgroup of $\{G, *\}$.	[4]

The relations ho_1 and ho_2 are defined on the Cartesian plane as follows

$$egin{aligned} &(x_1,\ y_1)
ho_1(x_2,\ y_2) \Leftrightarrow x_1^2-x_2^2 = y_1^2-y_2^2 \ &(x_1,\ y_1)
ho_2(x_2,\ y_2) \Leftrightarrow \sqrt{x_1^2+x_2^2} \leqslant \sqrt{y_1^2+y_2^2}. \end{aligned}$$

- a. For ρ_1 and ρ_2 determine whether or not each is reflexive, symmetric and transitive.
- b. For each of ho_1 and ho_2 which is an equivalence relation, describe the equivalence classes.

The permutation P is given by

 $P=egin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \ 3 & 4 & 5 & 6 & 2 & 1 \end{pmatrix}.$

a. Determine the order of P , justifying your answer.	[2]
b. Find P^2 .	[2]
c. The permutation group G is generated by P . Determine the element of G that is of order 2, giving your answer in cycle notation.	[4]

The set P contains all prime numbers less than 2500.

The set Q is the set of all subsets of P.

The set S contains all positive integers less than 2500.

The function $f: S \to Q$ is defined by f(s) as the set of primes exactly dividing s, for $s \in S$. For example $f(4) = \{2\}, f(45) = \{3, 5\}.$

a. Explain why only one of the following statements is true

- (i) $17 \subset P$;
- (ii) $\{7,\ 17,\ 37,\ 47,\ 57\}\in Q;$
- (iii) $\phi \subset Q$ and $\phi \in Q$, where ϕ is the empty set.
- b. (i) State the value of f(1), giving a reason for your answer.
 - (ii) Find n(f(2310)).
- c. Determine whether or not f is
 - (i) injective;
 - (ii) surjective.

The group $\{G, *\}$ has a subgroup $\{H, *\}$. The relation R is defined, for $x, y \in G$, by xRy if and only if $x^{-1} * y \in H$.

(a) Show that *R* is an equivalence relation.

[2]

[4]

[4]

[4]

(b) Given that $G = \{0, \pm 1, \pm 2, \ldots\}, H = \{0, \pm 4, \pm 8, \ldots\}$ and * denotes addition, find the equivalence class containing the number 3.

G is a group. The elements $a, b \in G$, satisfy $a^3 = b^2 = e$ and $ba = a^2b$, where e is the identity element of G.

a. Show that $(ba)^2 = e$.	[3]
b. Express $(bab)^{-1}$ in its simplest form.	[3]
c. Given that $a \neq e$,	[6]
(i) show that $b \neq e$;	
(ii) show that G is not Abelian.	

- a. The set $S_1 = \{2, 4, 6, 8\}$ and \times_{10} denotes multiplication modulo 10.
 - (i) Write down the Cayley table for $\{S_1, \times_{10}\}$.
 - (ii) Show that $\{S_1, \times_{10}\}$ is a group.
 - (iii) Show that this group is cyclic.

b. Now consider the group $\{S_1, \times_{20}\}$ where $S_2 = \{1, 9, 11, 19\}$ and \times_{20} denotes multiplication modulo 20. Giving a reason, state whether or [3] not $\{S_1, \times_{10}\}$ and $\{S_1, \times_{20}\}$ are isomorphic.

Let *S* be the set of matrices given by

$$egin{bmatrix} a & b \ c & d \end{bmatrix}; a,b,c,d \in \mathbb{R}, ad-bc=1$$

The relation R is defined on S as follows. Given A , $B \in S$, ARB if and only if there exists $X \in S$ such that A = BX .

- a. Show that R is an equivalence relation.
- b. The relationship between a, b, c and d is changed to ad bc = n. State, with a reason, whether or not there are any non-zero values of n, [2] other than 1, for which R is an equivalence relation.

Consider the set $S = \{0, 1, 2, 3, 4, 5\}$ under the operation of addition modulo 6, denoted by $+_6$.

[8]

[8]

a. Construct the Cayley table for $\{S, +_6\}$.	[2]
b. Show that $\{S, +_6\}$ forms an Abelian group.	[5]
c. State the order of each element.	[2]
d. Explain whether or not the group is cyclic.	[2]

Prove that the function $f:\mathbb{Z} imes\mathbb{Z} o\mathbb{Z} imes\mathbb{Z}$ defined by $f(x,\ y)=(2x+y,\ x+y)$ is a bijection.

a. Show that the set S of numbers of the form $2^m imes 3^n$, where $m,n\in\mathbb{Z}$, forms a group $\{S, imes\}$ under multiplication.	[6]
b. Show that $\{S, imes\}$ is isomorphic to the group of complex numbers $m+n$ i under addition, where $m,n\in\mathbb{Z}$.	[6]

The relation R is defined on the set $\mathbb Z$ by aRb if and only if 4a+b=5n , where $a,b,n\in\mathbb Z.$

a. Show that <i>R</i> is an equivalence relation.	[8]
b. State the equivalence classes of R .	[3]

The function $f: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+ \times \mathbb{R}^+$ is defined by $f(x, y) = \left(xy, \frac{x}{y}\right)$.

Prove that f is a bijection.

The transformations T_1 , T_2 , T_3 , T_4 , in the plane are defined as follows:

- T_2 : An anticlockwise rotation of 270° about the origin
- T_3 : A rotation of 180° about the origin
- \mathcal{T}_4 : An anticlockwise rotation of 90° about the origin.

The transformation T_5 is defined as a reflection in the *x*-axis.

The transformation T is defined as the composition of T_3 followed by T_5 followed by T_4 .

 T_1 : A rotation of 360° about the origin

	T_1	T_2	T_3	T_4
<i>T</i> ₁	T_1	T_2	T_3	T_4
T_2	T_2			
<i>T</i> ₃	T_3			
T_4	T_4			

b.i. Show that T_1 , T_2 , T_3 , T_4 under the operation of composition of transformations form a group. Associativity may be assumed.	[3]
b.ii.Show that this group is cyclic.	[1]
c. Write down the 2 × 2 matrices representing T_3 , T_4 and T_5 .	[3]
d.i.Find the 2 \times 2 matrix representing <i>T</i> .	[2]
d.ii.Give a geometric description of the transformation <i>T</i> .	[1]

 $\{G, *\}$ is a group of order N and $\{H, *\}$ is a proper subgroup of $\{G, *\}$ of order n.

(a) Define the right coset of $\{H, *\}$ containing the element $a \in G$.

(b) Show that each right coset of $\{H, *\}$ contains *n* elements.

(c) Show that the union of the right cosets of $\{H, *\}$ is equal to G.

(d) Show that any two right cosets of $\{H, *\}$ are either equal or disjoint.

(e) Give a reason why the above results can be used to prove that N is a multiple of n.

The set S contains the eight matrices of the form

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$$

where a, b, c can each take one of the values +1 or -1.

a. Show that any matrix of this form is its own inverse.
b. Show that S forms an Abelian group under matrix multiplication.
c. Giving a reason, state whether or not this group is cyclic.

- a. Prove that the number 14641 is the fourth power of an integer in any base greater than 6.
- b. For $a,b\in\mathbb{Z}$ the relation aRb is defined if and only if $rac{a}{b}=2^k$, $k\in\mathbb{Z}$.
 - (i) Prove that R is an equivalence relation.
 - (ii) List the equivalence classes of R on the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.

The group $\{G, +\}$ is defined by the operation of addition on the set $G = \{2n | n \in \mathbb{Z}\}$. The group $\{H, +\}$ is defined by the operation of addition on the set $H = \{4n | n \in \mathbb{Z}\}$ Prove that $\{G, +\}$ and $\{H, +\}$ are isomorphic.

a. Use the Euclidean algorithm to find $\gcd(162,\ 5982).$	[4]
b. The relation R is defined on \mathbb{Z}^+ by nRm if and only if $\gcd(n,\ m)=2.$	[7]
(i) By finding counterexamples show that R is neither reflexive nor transitive.	
(ii) Write down the set of solutions of $nR6$.	

A sample of size 100 is taken from a normal population with unknown mean μ and known variance 36.

Another investigator decides to use the same data to test the hypotheses H_0 : $\mu = 65$, H_1 : $\mu = 67.9$.

a. An investigator wishes to test the hypotheses H_0 : $\mu = 65$, H_1 : $\mu > 65$.	[3]
He decides on the following acceptance criteria:	
Accept H_0 if the sample mean $\bar{x} \le 66.5$	
Accept H_1 if $\bar{x} > 66.5$	
Find the probability of a Type I error.	
b.i.She decides to use the same acceptance criteria as the previous investigator. Find the probability of a Type II error.	[3]
b.iiFind the critical value for $ar{x}$ if she wants the probabilities of a Type I error and a Type II error to be equal.	[3]

[8]